Synthesis of the enantiomers of myo-inositol 1,2,4,5-tetrakisphosphate, a regioisomer of myo-inositol 1,3,4,5-tetrakisphosphate

Stephen J. M ills and B arry V. L. Potter*
Department of M edicinal C hemistry, School of Pharmacy and Pharmacology, University of Bath, Claverton D own, B ath, BA 2 7AY, UK

R outes for the synthesis of racemic myo-inositol 1,2,4,5-tetrakisphosphate dL -Ins(1,2,4,5)P $\mathbf{P}_{4} 5 \mathrm{ab}$ and the chiral antipodes D-and L-myo-inositol 1,2,4,5-tetrakisphosphate 5 a and 5 b , respectively, are described. For the synthesis of racemate $5 \mathrm{ab}, \mathbf{3 , 6 - d i - 0}$-benzoyl-1,2:4,5-di-0 -isopropylidene-myo-inositol 7ab is prepared in two steps from myo-inositol. The ketals are hydrolysed under acidic conditions to give DL-1,4-di-0 -benzoyl-myo-inositol 8ab. Phosphitylation of compounds 8ab using chloro(diethoxy)phosphine in the presence of base, followed by oxidation and a three-step deprotection strategy, gives DL-Ins(1,2,4,5) $\mathbf{P}_{4} 5 \mathrm{Fab}$.

The chiral tetrakisphosphates 5 a and 5 b are synthesized using a different route. The 4,5-isopropylidene group of DL-3,6-di-0 -benzyl-1,2:4,5-di-0-isopropylidene-myo-inositol 13ab are selectively removed under mild acidic conditions to give diol 14ab. p-M ethoxybenzylation at the 4,5-positions followed by acid hydrolysis of the cis-isopropylidene ketal affords cis-diol 16ab. Selective coupling of (S)-(+)-0-acetylmandelic acid with diol 16ab at the equatorial hydroxy group provides two diastereoisomers 18 and 19, which are separated by chromatography. Basic hydrolysis of the individual diastereoisomers provides the enantiomers 16a and 16b. A cidic hydrolysis gives D- and L-3,6-di-0 -benzyl-myo-inositol 20a and 20b, respectively. Phosphitylation and oxidation of tetraols 20 a and 20 b gives the fully blocked derivatives, which are deprotected to give tetrakisphosphates $5 a$ and $5 b$, respectively. The absolute configuration of compound 20a is established by a chemical method. $\mathrm{DL}-1,2: 4,5-\mathrm{D} \mathrm{i}-0$-isopropylidene-myo-inositol 12 ab is coupled to (S)-(+)-0 -acetylmandelic acid to give a mixture of bis-esters 26 and 27 and crystallisation of the mixture of diastereoisomers affords pure isomer 27. B asic hydrolysis gives the pure enantiomer 12a (for which the absolute configuration is known) and benzylation followed by acid hydrolysis gives tetraol 20a with the same physical properties as compound 20a prepared by a different route described previously. D -Ins(1,2,4,5) $\mathrm{P}_{4} 5$ a is a potent mobiliser of intracellular Ca^{2+} ions in permeabilised platelets, while $\mathrm{L}-\mathrm{Ins}(\mathbf{1 , 2 , 4 , 5}) \mathrm{P}_{4} 5 \mathrm{~b}$ is inactive.

Introduction

The involvement of myo-inositol polyphosphates in signal transduction via the polyphosphoinositide pathway has stimulated the need for the synthesis of molecules that will somehow interfere with, or modulate, the processes of cellular signalling, ${ }^{1}$ whether it be at phospholipase C, the intracellular D-myo inositol $1,4,5$-trisphosphate receptor, or even further downstream, where the second messenger d-myo-inositol 1,4,5trisphosphate $\left[\operatorname{lns}(1,4,5) \mathrm{P}_{3}, 1\right]$ is deactivated and the signal is terminated. The process of signal transduction via $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ starts when a cell-surface receptor activates the enzyme phospholipase C- β via a G-protein. This enzyme hydrolyses the minor membrane phospholipid, phosphatidylinositol 4,5bisphosphate, to provide the hydrophobic diacylglycerol and hydrophilic $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ as signalling molecules. $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ interacts specifically at an N -terminal binding site of a tetrameric $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ receptor-operated Ca^{2+} channel, in order to release Ca^{2+} from non-mitochondrial stores. ${ }^{1} \mathrm{~A}$ fter the Ca^{2+} release event, the signal must be deactivated by one or more metabolic pathways. First, an $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ 5-phosphatase removes a 5 -phosphate moiety from $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ to give d-myoinositol 1,4-bisphosphate $\operatorname{Ins}(1,4) \mathrm{P}_{2} 2$ which is inactive for Ca^{2+} release, but has been reported to be an allosteric activator of the enzyme 6 -phosphofructo-1-kinase, ${ }^{2}$ and also activates the enzyme DNA polymerase $\alpha .{ }^{3}$ Second, Ins $(1,4,5) \mathrm{P}_{3}$ can also be phosphorylated to give d-myo-inositol 1,3,4,5-tetrakisphosphate $\left[\operatorname{lns}(1,3,4,5) \mathrm{P}_{4}, 3\right]$, and the production of $\operatorname{Ins}(1,4) \mathrm{P}_{2}$ and $\operatorname{lns}(1,3,4,5) \mathrm{P}_{4}$ is considered as an off signal. The function of $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$ has not been unambiguously resolved; however, it may gatea plasma membraneC a^{2+} channel. ${ }^{4} \mathrm{An} \operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$ binding protein has been purified from platelets ${ }^{5}$ and is a

GTPase activating protein-1 (GAP-1) family member. The GTPase activating protein-1 site has been designated GAP1 ${ }^{\text {IP4BP }}$. When $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$ binds at this site it may possibly have a second messenger function in its own right. The synthesis of regioisomeric inositol tetrakisphosphates is therefore of clear current interest.

$\mathrm{R}_{1}=\mathrm{PO}_{3}^{2-} \mathrm{R}^{2-}=\mathrm{H}, \operatorname{lns}(1,4,5) \mathrm{P}_{3} 1$
$R_{1}=R^{2}=H, \operatorname{lns}(1,4) P_{2} 2$
$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{PO}_{3}^{2}, \operatorname{lns}(1,3,4,5) \mathrm{P}_{4} 3$

$\mathrm{R}=\mathrm{H}, \operatorname{Ins}(2,4,5) P_{3}$ (racemic mixture, 4ab)
$\mathrm{R}=\mathrm{PO}_{3}^{2-}, \operatorname{Ins}(1,2,4,5) P_{4}$ (racemic mixture, 5 ab)
D-Ins(1,2,4,5) P_{4} 5a; $\operatorname{l-Ins}(1,2,4,5) P_{4}$ 5b

DL-myo-Inositol $2,4,5$-trisphosphate $\left[\operatorname{lns}(2,4,5) \mathrm{P}_{3}, 4 \mathrm{ab}\right]$ is an unnatural trisphosphate, which has a potency some 30 -fold lower than $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}{ }^{6,7}$ but has been used as a metabolic
resistant analogue ${ }^{6}$ of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$, since it is a weak substrate for $\operatorname{Ins}(1,4,5) \mathrm{P}_{3} 5$-phosphatase and a poor substrate for Ins $(1,4,5) \mathrm{P}_{3}$ 3-kinase. ${ }^{6,8}$ Recently, Bird and Putney, Jr, ${ }^{9}$ microinjected $\operatorname{Ins}(2,4,5) \mathrm{P}_{3}$ into mouse lacrimal acinar cells and it stimulated intracellular Ca^{2+} mobilisation and Ca^{2+} entry. However, microinjection of purified $\mathrm{D}-\mathrm{Ins}(1,3,4,5) \mathrm{P}_{4}$ into these cells was ineffective at Ca^{2+} mobilisation or activation of Ca^{2+} entry. Thus, the introduction of high concentrations (final cellular concentration $100-200 \mu \mathrm{M}$) of $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$ somehow blocked the $\operatorname{Ins}(2,4,5) \mathrm{P}_{3} \mathrm{Ca}^{2+}$ entry phase. These results indicated that physiological concentrations of $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$ in this cell type do not cause Ca^{2+} mobilisation ${ }^{10-12}$ nor do they potentiate Ins $(1,4,5) \mathrm{P}_{3}$ induced Ca^{2+} entry.
Since it was unclear whether substitution at the 2-hydroxy group or the lack of a phosphate at the 1-hydroxy moiety was responsible for the properties described above, we synthesized the unnatural tetrakisphosphate myo-inositol 1,2,4,5-tetrakisphosphate, $\mathrm{DL}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} \mathbf{5 a b}$, first in racemic form and then as the individual enantioners $\mathrm{d}-\mathrm{Ins}(1,2,4,5) \mathrm{P}_{4} 5 \mathrm{a}$ and L-Ins$(1,2,4,5) \mathrm{P}_{4} \mathbf{5 b}$. $\mathrm{D}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} \mathbf{5 a}$ could be considered as a relative of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ but with a charged phosphate at the 2-position (several articles have focused upon substitution at the 2-position with neutral bulky groups). ${ }^{1,7,13}$ This analogue can also be related to $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$, but with a 3 -phosphate being transposed onto the adjacent 2-hydroxy moiety. These compounds were synthesized in order to evaluate structureactivity profiles with respect to the $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ and Ins$(1,3,4,5) \mathrm{P}_{4}$ binding proteins and the enzymes $\operatorname{Ins}(1,4,5) \mathrm{P}_{3} 3$ kinase and $\operatorname{Ins}(1,4,5) \mathrm{P}_{3} 5$-phosphatase, the latter of which also hydrolyses $\operatorname{Ins}(1,3,4,5) \mathrm{P}_{4}$.
Ins $(1,2,4,5) \mathrm{P}_{4}$ has previously been synthesized in racemic ${ }^{14}$ and chiral ${ }^{15}$ form and a preliminary report of the present work concerning the racemic modification has appeared. ${ }^{14 \mathrm{a}} \mathrm{H}$ owever, only $\mathrm{D}-\mathrm{Ins}(1,2,4,5) \mathrm{P}_{4} 5$ a has been reported in chiral form. We now report here a useful route to the synthesis of both enantiomers of $\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4}(\mathbf{5}$ a and $\mathbf{5 b})$ by resolution of partially blocked myo-inositol derivatives, using the chiral auxiliary (S)-(+)-0 -acetylmandelic acid 17 .
The enantiomers of $\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4}$ were synthesized by a different route from that for the racemic mixture. Previously, ${ }^{14 a}$ we demonstrated that $\mathrm{DL}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} 5$ ab competitively inhibited the dephosphorylation of $\left[{ }^{3} \mathrm{H}\right] \mathrm{Ins}(1,4,5) \mathrm{P}_{3}$ by human erythrocyte membrane $\operatorname{Ins}(1,4,5) \mathrm{P}_{3} 5$-phosphatase with a K_{i}-value of $15.9 \mu \mathrm{M}$. However, either isomer could potentially inhibit the enzyme. The reasons for synthesizing the title compounds were, first, to establish which isomer was responsible for the inhibition of the 5 -phosphatase, and second, to discover the true $E C_{50}$-value for Ca^{2+} release of $\mathrm{D}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} 5 a$ in comparison with those of $\operatorname{Ins}(1,4,5) \mathrm{P}_{3}$ and scyllo- $\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4}$. It is also known that $\mathrm{L}-\mathrm{Ins}(2,4,5) \mathrm{P}_{3}$ can release Ca^{2+} from intracellular stores, albeit with a low potency (EC_{50}-value of $110 \mu \mathrm{M}$) and thus it would be interesting to discover if $L-\operatorname{lns}(1,2,4,5) \mathrm{P}_{4}$ $\mathbf{5 b}$ made some contribution to the Ca^{2+}-releasing properties observed for DL-Ins(1,2,4,5)P ${ }_{4}$.

Results and discussion

DL-3,6-D i-O-benzoyl-1,2:4,5-di-0-isopropylidene-myo-inositol 7ab (Scheme 1) was prepared using the method developed by Gigg et al. ${ }^{16}$ A mixture of myo-inositol 6, 2,2-dimethoxypropane and toluene-p-sulfonic acid (PTSA) was stirred at $100^{\circ} \mathrm{C}$ in N, N-dimethylformamide (D M F). A fter benzoylation the highly insoluble product 7ab was suspended in aq. acetic acid and the mixture was heated under reflux to give dL-1,4-di0 -benzoyl-myo-inositol 8ab. This tetraol has also been synthesized by M eek et al. ${ }^{17}$

Commerically available chloro(diethoxy)phosphine ($\delta_{\mathrm{P}} 167$) was used to phosphitylate tetraol $\mathbf{8 a b}$. The ${ }^{31}$ P NM R spectrum of the intermediate 1,2,4,5-tetrakisphosphite 9ab, operating at 36.2 M Hz with a sweep width of 2500 KHz (higher field

Scheme 1 Reagents and conditions: i, 2,2-dimethoxypropane, PTSA (cat), D M F, 100-120 ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; then pyridine, benzoyl chloride, 2 h (30%); ii, 80% (aq.) A COH , reflux, 30 min (93%); iii, (EtO) ${ }_{2}$ PCI, DIPE, D M F, 1 h; then 70% tert-butyl hydroperoxide (83%); iv, $\mathrm{TM} \mathrm{SBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp. overnight then water, and final purification by Q-Sepharose F ast Flow ion-exchange chromatography (81%); v, $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$, $60^{\circ} \mathrm{C}, 1 \mathrm{~h}$; then purification by Q -Sepharose Fast Flow ion exchange chromatography (80%). All compounds are racemic.
strengths may not show the following effect due to chemicalshift anisotropy), showed eight peaks resulting from two ${ }^{5}{ }^{5 p}$ AB coupling systems ${ }^{18}$ centred around $\delta_{\mathrm{p}}=141.8$ and 141.3 (for the 4,5 -positions) and $\delta_{\mathbf{P}}=140.4$ and 139.8 (for the 1,2-positions), for each doublet of the $A B$ coupling pattern demonstrating phosphitylation of a pair of vicinal diols at the 1,2 -positions (5 pp 1.8 Hz) and for the 4,5 -positions (${ }^{5}$) pp 3.7 Hz). Oxidation of phosphites 9ab provided crystalline DL-3,6-di-0-benzoyl-1,2,4,5-tetrakis-0 -(diethoxyphosphoryl)-myo-inositol 10ab. The eight ethyl groups of compound 10ab were replaced by transesterification quantitatively (checked by ${ }^{31}$ P N M R spectroscopy) using bromotrimethylsilane in methylene dichloride. H ydrolysis with water gave dl-3,6-di-0-benzoylIns $(1,2,4,5) \mathrm{P}_{4}$ 11ab quantitatively. A small sample was purified by ion-exchange chromatography using a gradient of triethylammonium hydrogen carbonate (TEA B) on Q-Sepharose Fast Flow to give pure tetraol 11ab. DL-Ins $(1,2,4,5) \mathrm{P}_{4} 5 \mathrm{ab}$ was prepared by basic hydrolysis of the two benzoate esters. Pure $\mathrm{DL}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} 5 \mathbf{a b}$ was obtained as the triethylammonium salt after ion exchange chromatography and eluted at ca. 550 $\mathrm{mmol} \mathrm{dm}^{-3}$ TEAB buffer and was quantified by phosphate analysis.

Racemic 1,4-di-0-benzyl-5,6-bis-0-(p-methoxybenzyl)-myoinositol 16ab was prepared according to Scheme 2 and has also been synthesized by another group. ${ }^{19}$ Basic methanolysis of the two benzoyl esters of compound 7ab gave DL-1,2:4,5-di-O-isopropylidene-myo-inositol 12ab. Benzylation of diol 12ab with benzyl bromide provided fully blocked DL-3,6-di-O-benzyl-1,2:4,5-di-0-isopropylidene-myo-inositol 13ab. The less stable trans-acetal was removed selectively using a catalytic quantity of PTSA and ethane-1,2-diol to provide DL-1,4-di-0-benzyl-2,3-0-isopropylidene-myo-inositol 14ab in 80% yield.

This compound has also been prepared from 13ab by Gigg et al. ${ }^{20}$ under different acidic conditions in only 55% yield. Diol 14ab was alkylated with p-methoxybenzyl chloride to provide fully blocked product 15ab. The cis isopropylidene group was removed by careful acid treatment to give diol 16ab. Caution must be taken at this stage, to avoid hydrolysis of the p methoxybenzyl group. It was envisaged that the introduction of a chiral auxiliary at the equatorial position of the cis diol 16ab would result in the formation of two separable diastereoisomers.
7ab
i \downarrow

16ab
17

Scheme 2 Reagents and conditions: i, $\mathrm{NaOH}, \mathrm{MeOH}$, reflux, 30 min (82\%); ii, BnBr, N aH , D M F, 2 h; room temp. (91\%); iii, ethane-1,2-diol, methylene dichloride, PTSA (cat), rt (80\%); iv, p-methoxybenzyl chloride, $\mathrm{NaH}, \mathrm{DM} F, r t, 2 \mathrm{~h}(80 \%) ; \mathrm{v}, \mathrm{M} \mathrm{eOH}-1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$, (9:1), $50^{\circ} \mathrm{C}, 30 \mathrm{~min}(90 \%)$; vi, D M A P, DCC, methylene dichloride, $-20^{\circ} \mathrm{C}$, (36\% for 18; 37\% for 19); vii, $\mathrm{NaOH}, \mathrm{M} \mathrm{eOH}$, reflux, 30 min (99% for 16a, 91% for 16); viii, EtOH-1 mol $\mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$, (2:1), reflux, 4 h (86\% for 20a, 83\% for 20b)
(S)-(+)-0-A cetylmandelic acid $\mathbf{1 7}$ was chosen for resolution of the cis-diol because it is relatively inexpensive and is 99% pure by GLC, and unlike the enantiomers of the commonly used camphanic acid chloride, both R and S isomers are cheaply available. (S)-(+)-0-A cetylmandelic acid has not been widely used for the resolution of myo-inositol derivatives, so we took the opportunity to investigate its potential as a resolving reagent. Previously, it was used successfully to resolve several blocked myo-inositol derivatives. Two diastereoisomers were derived, by coupling (S)-(+)-0-acetylmandelic acid to DL-1,4,5,6-tetra-0-benzyl-myo-inositol ${ }^{21}$ at the equatorial 1 hydroxy position and were easily separated by flash chromatography and used to synthesize previously inaccessible hexoses ${ }^{21}$ and the β-glucosidase and α-mannosidase inhibitors (+)and (-)-norjirimycin. ${ }^{22}$ We have recently employed (S)-(+)-0acetylmandelic acid as a chiral auxiliary to resolve partially
blocked myo-inositol derivatives for the synthesis of D - and $\mathrm{L}-\mathrm{Ins}(1,4,6) \mathrm{P}_{4}{ }^{23}$

Coupling of DL-1,4-di-0-benzyl-5,6-bis-0-(p-methoxybenz-yl)-myo-inositol 16ab with (S)-(+)-0-acetylmandelic acid 17 at low temperature afforded the two diastereoisomers 18 and 19 (structure established retrospectively, after the determination of the chirality of derived tetraols 20a and 20b respectively, vide infra). By keeping the temperature at $-20^{\circ} \mathrm{C}$, selectivity was achieved and there was no acylation at the 2-hydroxy position (by ${ }^{1} \mathrm{H}$ NMR analysis); isomers 18 and 19 were separated by flash chromatography and were obtained as crystalline solids.

The proton $1-\mathrm{H}$ (shifted downfield due to esterification of $1-\mathrm{OH}$) could not be identified in either diastereoisomer (18 and 19) because the methylene $A B$ coupling pattern of the benzyl group overlapped with the expected dd for 1-H. However, 2-H was identified as a broad doublet at $\delta 4.15(\mathrm{~J} 1.8 \mathrm{~Hz})$ for compound 18 and as a broad doublet (J 1.8 Hz) at $\delta 4.40$ for compound 19. The $2-\mathrm{OH}$ signal was also significant because it was seen at $\delta 2.16$ for compound 18 and at $\delta 2.69$ for compound 19, which indicated that the proton and hydroxy groups attached to C-2 were more deshielded than for the less polar diastereoisomer 18. The unique singlet at $\delta 5.94$ for isomer 18, and at δ 5.98 for isomer 19, of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{Ph}^{2} \mathrm{CO}_{2} \mathrm{Ins}\right.$ is indicative of the high purity of each diastereoisomer and no other impurities were detected in either the ${ }^{1} \mathrm{H}$ or the ${ }^{13} \mathrm{C}$ N M R spectra.

D eacylation of isomers $\mathbf{1 8}$ and 19 under basic conditions gave the pure enantiomers 16 a and $\mathbf{1 6 b}$ and the optical rotations of products 16a and 16b were equal and opposite. The two chiral 1,2,4,5-tetraols were prepared by acid hydrolysis of the pmethoxybenzyl ethers in aq. HCl at reflux temperature. The resulting solid was filtered off, and recrystallised from ethanol to give the pure enantiomers D-20a and L-3,6-di-0-benzyl-myoinositol 20b which had specific rotations of +16 and $-16 x$ $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$, respectively. The mp of the racemic mixture (lit., ${ }^{16} 205-207^{\circ} \mathrm{C}$) was considerably higher than for the chiral antipodes ($172-173^{\circ} \mathrm{C}$).

The absolute configuration of antipodes 20a and 20b was determined by a chemical method. A simple way to establish the absolute configuration of D-3,6-di-O-benzyl-myo-inositol 20a would be to resolve DL-1,2:4,5-di-0-isopropylidene-myoinositol 12ab, followed by benzylation and acidic hydrolysis of the isopropylidene groups to give the individual enantiomers 20a and 20b. The resolution of DL-1,2:4,5-di-0-isopropyl-idene-myo-inositol has been previously accomplished using the chiral auxiliary (S)-(-)- ω-camphanoyl chloride. ${ }^{24}$ In this resoIution, the 3-position was blocked by using tert-butyldiphenylsilyl chloride, the 6-position was acylated with the chiral auxiliary, and separation of the diastereoisomers was achieved by tedious HPLC. Therefore, a simple resolution to provide the chiral diol would be appropriate, because single-crystal X-ray analysis of the 6-0-camphanate has been determined, and derived from this the specific rotation, $[a]_{\mathrm{D}}+22$, and mp (159$161^{\circ} \mathrm{C}$) for L-1,2:4,5-di-0-isopropylidenemyo-inositol has been established. ${ }^{24} \mathrm{M}$ oreover, in a recent article, D-1,2:4,5-di-0-isopropylidene-myo-inositol was synthesized from d-mannitol, however, the mp was found to be $176-177^{\circ} \mathrm{C}$ with a specific rotation of $[a]_{0}-21.7^{25}$ Thus, the specific rotation is in agreement for both enantiomers, but there appears to be some discrepancy over the mp

DL-1,2:4,5-D i-0-isopropylidene-myo-inositol 12ab was acylated with (S)-(+)-0-acetylmandelic acid 17 in the presence of a coupling reagent to afford a mixture of diastereoisomers (26 and 27) which could not be separated by chromatography (see later, Scheme 4). The mixture of diastereoisomers was recrystallised from hot methanol and one compound, 27, was in abundance by a factor of 2.5 by $^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy; further recrystallisation from the same solvent gave the pure diastereoisomer 27 in 18% yield (unoptimised). Basic methanolysis of the two acyl groups followed by chromatography and recrystallisation of the diol from ethyl acetate gave D-1,2:4,5-di-0-
isopropylidene-myo-inositol $\mathbf{1 2 a},[\alpha]_{D}-22$, with a mp of $174-$ $176^{\circ} \mathrm{C}$. These physical properties agreed with the data published by Chiara and M artín-Lomas. ${ }^{25} \mathrm{Gigg}$ and co-workers ${ }^{26}$ have synthesized L-1,2:4,5-di-0-isopropylidene-myo-inositol by a different route, $[a]_{\mathrm{D}}+23.3$, ($\mathrm{mp} 175-177^{\circ} \mathrm{C}$). The dispute over the mp of the chiral diol has now been resolved because the value ($159-161{ }^{\circ} \mathrm{C}$) stated by Young and co-workers ${ }^{24}$ appeared to be a little low. Compound 12a was then benzylated to give D-3,6-di-0-benzyl-1,2:4,5-di-0-iso propylidene-myoinositol 13a, ($[a]_{\mathrm{D}}-44, \mathrm{mp} 157-159^{\circ} \mathrm{C}$). Recently, Gigg and co-workers ${ }^{26}$ synthesized L-3,6-di-0-benzyl-1,2:4,5-di-0-iso-propylidenemyo-inositol 13b, $[a]_{D}+85$, which had a mp of $159-161{ }^{\circ} \mathrm{C}$. The acetal protecting groups at the 1,2 - and $4,5-$ positions were removed by acid hydrolysis and the solvents were evaporated off in vacuo. The resulting solid was recrystallised from ethanol to give d-3,6-di-O-benzyl-myo-inositol 20a, which was identical (${ }^{1} \mathrm{H}$ NM R, mp, specific rotation) with the previously described compound.

Scheme 3 Reagents and conditions: i, 1H-tetrazole 22, methylene dichloride, reagent 21, room temp., 15 min, add tetraols 20a and 20b in separate experiments, 10 min ; ii, M CPBA, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}(94 \%$ for $\mathbf{2 5 a}$, 88% for $\mathbf{2 5 b}$); iii, Na a/liquid NH_{3}, then purification by ion-exchange chromatography

A $P^{\text {III }}$ approach was adopted to introduce the phosphate substituents, as shown in Scheme 3. Thus, phosphitylating agent ${ }^{27}$ 21 (2 mole equivalents per hydroxy group) and 1H -tetrazole 22 (4 mole equivalents per hydroxy group) reacted to form the tetrazolide intermediate $\mathbf{2 3}\left(\delta_{\mathrm{p}}+126.73 \mathrm{ppm}\right.$; cf. $\delta_{\mathrm{p}}+147.86$ ppm for compound 21). A ny moisture present in the solvent is indicated by the formation of H -phosphonate ($\delta_{\mathrm{p}}+7.54 \mathrm{ppm}$). The procedure was carried out for both enantiomers in the same way. Thus, in separate experiments the enantiomers of 3,6-di-O-benzyl-myo-inositol 20a and 20b were allowed to react with intermediate 23. The ${ }^{31}$ P NMR spectrum again showed eight peaks and the distinctive five-bond ${ }^{31} \mathrm{p}$ - ${ }^{31} \mathrm{p}$ spin-spin coupling systems ${ }^{18}$ for isomers 24a and 24b $\left({ }^{5}\right)_{1,2} 1.8 \mathrm{~Hz}_{;}{ }^{5}{ }_{4,5}$ 3.7 Hz). Oxidation of the tetrakisphosphite intermediates afforded thefully protected D 25a and L-3,6-di-0-benzyl-1,2,4,5-tetrakis-O-(dibenzyloxyphosphoryl)-myo-inositol 25b in high
yields. U se of m-chloroperbenzoic acid (M CPBA) is preferable to tert-butyl hydroperoxide since the latter gives lower yields resulting from the formation of polar by-products. All the benzyl protective groups were removed from the fully blocked compound in one step by using sodium in liquid ammonia. ${ }^{28}$ Purification of crude $D-\operatorname{lns}(1,2,4,5) P_{4} 5$ and $L-\operatorname{Ins}(1,2,4,5) P_{4}$ $\mathbf{5 b}$ was carried out by ion-exchange chromatography on QSepharose Fast Flow and both compounds were eluted at ~ 700 $\mathrm{mmol} \mathrm{dm}^{-3}$ TEAB buffer and were isolated as their triethylammonium salts and quantified by phosphate analysis.

Scheme 4 Reagents and conditions: i, DCC, DMAP, methylene dichloride, $0^{\circ} \mathrm{C}$ (18% for 27); ii, $\mathrm{NaOH}, \mathrm{M} \mathrm{eOH}$, reflux, 30 min (86%); iii, $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DM} \mathrm{F}, 2 \mathrm{~h}(91 \%)$; iv, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}-\mathrm{M} \mathrm{eOH}$ (1:9), reflux, 30 min (95\%)

Full experimental data for $\operatorname{DL-Ins}(1,2,4,5) \mathrm{P}_{4}$ 5ab have been published for C^{2+} release ${ }^{29}$ and its interaction with theenzymes Ins $(1,4,5) \mathrm{P}_{3} 3$-kinase and 5 -phosphatase. ${ }^{30}$ The full data for antipodes $\mathbf{5 a}$ and $\mathbf{5}$ b will be published elsewhere. However, notably $\operatorname{L-Ins}(1,2,4,5) \mathrm{P}_{\mathbf{4}} \mathbf{5 b}$ was not found to release intracellular Ca^{2+} and $\mathrm{D}-\operatorname{Ins}(1,2,4,5) \mathrm{P}_{4} 5$ a was only ~ 2-fold less potent than was $\operatorname{lns}(1,4,5) \mathrm{P}_{3}$ at Ca^{2+} release in rabbit platelets.

Experimental

TLC was performed on pre-coated plates (M erck TLC aluminium sheets silica $60 \mathrm{~F}_{254}$, Art. no. 5554): the product was visualised by spraying with methanolic phosphomolybdic acid, followed by heating. Flash chromatography refers to the procedure developed by Still et al. ${ }^{31}$ and was carried out on Sorbsil C60 silica gel.

NM R spectra for the nuclei ${ }^{31} \mathrm{P},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ were recorded on JEOL FX-90Q, GX 270 and GX 400 spectrometers. Chemical shifts were measured in parts per million (ppm) relative to tetramethylsilane (TMS), deuterium oxide ($\mathrm{D}_{2} \mathrm{O}$) or $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulfoxide ($\left.{ }^{2}{ }^{2} \mathrm{H}_{6}\right]$ DM SO). Samples recorded in $\mathrm{D}_{2} \mathrm{O}$ were approximately pH 4-5. The ${ }^{31} \mathrm{P} N \mathrm{~N}$ R shifts were measured in ppm relative to external 85% phosphoric acid. M .p.s (uncorrected) were determined using a Reichert-Jung Thermo G alen K ofler block. M icroanalysis was carried out by the U niversity of Bath microanalysis service. Low-resolution mass spectra were recorded by the U niversity of Bath M ass Spectrometry Service using + ve and -ve Fast A tom Bombardment
(FAB) with 3-nitrobenzyl alcohol (NBA) as the matrix. Highresolution accurate mass spectrometry was carried out by the EPSERC M ass Spectrometry Service in Swansea. Optical rotations were measured using an Optical A ctivity Ltd. AA-10 polarimeter; $[a]_{\mathrm{D}}$-values are given in $10^{-1} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{~g}^{-1}$ and all rotations were measured at ambient temperature

Ion-exchange chromatography was performed on an LK BPharmacia M edium-Pressure Ion Exchange Chromatograph using Q-Sepharose and gradients of TEA B as eluent. Fractions containing phosphate were assayed by a modification of the Briggs phosphate test. ${ }^{32}$

Light petroleum refers to the fraction with distillation range $60-80^{\circ} \mathrm{C}$.

DL-1,4-D i-0-benzoyl-myo-inositol 8ab

DL-3,6-D i-0-benzoyl-1, 2:4,5-di-0-isopropylidene-myo-inositol 7 ab ($9.36 \mathrm{~g}, 20 \mathrm{mmol}$) was suspended in 80% aq. acetic acid (200 cm^{3}). The mixture was heated under reflux for 30 min , cooled, and poured into an ice-water mixture ($1000 \mathrm{~cm}^{3}$). The precipitated solid was filtered off, washed thoroughly with diethyl ether and recrystallised from DM F -water to give the title compound 8ab (7.25 g , 93%), mp 253-254 ${ }^{\circ} \mathrm{C}$ (from DM F-water) (Found: C, 61.9; H, 5.11. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{8}$ requires $\mathrm{C}, 61.85 ; \mathrm{H}$, $\left.5.15 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 3.48(1 \mathrm{H}, \mathrm{dt}$, J 4.65 and 9.3 , $5-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.25,6.9$ and $9.5,3-\mathrm{H}$), $3.93(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 5.5 and $9.5,6-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 2.0,2-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.0$ and 10.0, 1-H), 4.97(1 H , d, J 6.6, $\mathrm{D}_{2} \mathrm{O}$ ex, OH), 5.25-5.33 (2 H m, $\mathrm{D}_{2} \mathrm{O}$ ex, OH), $5.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.9,4-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.2$, $\mathrm{D}_{2} \mathrm{O}$ ex, OH), 7.50-7.69 [6 H, m, OC(O)Ph] and 8.00-8.09 [4 H, m, OC(O)Ph]; $\left.\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{D} \mathrm{M} \mathrm{SO}\right) 69.83,70.77,70.93$, 73.07, 75.70, 76.28, 129.34, 130.12, 130.25, 130.64, 131.13, 133.85, 134.14 and 166.58; m/z (FA B ${ }^{+}$) 389 [M + H (100\%)], 306 (62), 274 (28), 243 (20), 199 (40) and 105 (88).

DL-3,6-D i-0-benzoyl-1,2,4,5-tetrakis-0-(diethoxyphosphoryl)-myo-inositol 10ab

A mixture of DL-1,4-di-O-benzoyl-myo-inositol 8ab ($0.776 \mathrm{~g}, 2$ $\mathrm{mmol})$, dry D M F ($10 \mathrm{~cm}^{3}$) and dry N, N-diisopropylethylamine ($2.8 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) was stirred under nitrogen at room temperature. The solution was cooled in an ice-bath and chloro(diethoxy)phosphine ($2.32 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) was added dropwise over a period of 5 min and then the mixture was warmed to room temperature. A fter being stirred for $1 \mathrm{~h}, 70 \%$ tert-butyl hydroperoxide, ($3 \mathrm{~cm}^{3}, 21.8 \mathrm{mmol}$) was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$ to give the crude product, R_{f} (ethyl acetate) 0.20 . The solvents were evaporated off in vacuo and the remaining solid was partitioned between water and methylene dichloride (50 cm^{3} of each). The organic layer was washed successively with 10% aq. sodium metabisulfite, brine ($20 \mathrm{~cm}^{3}$ of each) and finally water ($2 \times 20 \mathrm{~cm}^{3}$). The organic layer was dried over ($\mathrm{M} \mathrm{gSO}_{4}$) and evaporated off to give a solid. The crude product was purified over silica gel (ethyl acetate) and the solvent was evaporated off to give the pure title compound 10ab ($1.55 \mathrm{~g}, 83 \%$), mp $122-123^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (Found: C, 46.1; H, 6.03. $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{20} \mathrm{P}_{4}$ requires C, $46.35 ; \mathrm{H}, 6.00 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.82-0.88\left[9 \mathrm{H}, \mathrm{m}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 1.20-1.33[15 \mathrm{H}$, m, OP(O)OCH $\left.{ }_{2} \mathrm{CH}_{3}\right], 3.52-3.85\left[6 \mathrm{H}, \mathrm{m}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right]$, $4.01-4.21\left[10 \mathrm{H}, \mathrm{m}, \mathrm{OP}(\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 4.79(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.5,1$ - and $5-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.2$ and $9.5,4-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2.4$ and 9.2, 2- or $3-\mathrm{H}$), 5.29 ($1 \mathrm{H}, \mathrm{td}$, J 2.1 and 10.1, 3 - or $2-\mathrm{H}$), 5.90 (1 $\mathrm{H}, \mathrm{t}, \mathrm{J} 10.1,6-\mathrm{H}), 7.43-7.59[6 \mathrm{H}, \mathrm{m}, \mathrm{OC}(\mathrm{O}) \mathrm{Ph}]$ and $8.17-8.24$ [$4 \mathrm{H}, \mathrm{m}, \mathrm{OC}(\mathrm{O}) \mathrm{Ph}$]; $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 14.34, 15.24, 15.79, 15.89, 63.66, 63.79, 64.22, 70.02, 73.27, 75.05, 75.37, 76.35, $129.02,129.70,128.11,128.21,130.12,130.38,133.14,133.37$ and 165.32; $\delta_{\mathrm{P}}\left(162 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-1.53,-2.11,-2.18$ and $-2.49\left({ }^{1} \mathrm{H}{ }^{31} \mathrm{P}\right.$ decoupled); m/z (FA B $\left.{ }^{+}\right) 933[\mathrm{M}+\mathrm{H}(18 \%)], 779$ (5) and 105 (100).

DL-3,6-D i-0 -benzoyl-myo-inositol 1,2,4,5-tetrakisphosphate 11ab

DL-3,6-D i-O-benzoyl-1,2,4,5-tetrakis-0-(diethoxyphosphoryl)-
myo-inositol 10ab ($0.932 \mathrm{~g}, 0.1 \mathrm{mmol}$) in dry methylene dichloride ($5 \mathrm{~cm}^{3}$) was stirred at room temperature under nitrogen. Bromotrimethylsilane ($0.264 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) was added to the dry solution, and the mixture was stirred overnight. The solvents were evaporated off and the residue was stirred with water ($2 \mathrm{~cm}^{3}$) for 1 h . Final purification of onethird of the compound was carried out by ion-exchange chromatography, on Q-Sepharose Fast Flow, using a buffer gradient of TEAB ($200-1000 \mathrm{mmol} \mathrm{dm}^{-3}$) and flow rate $5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The fractions which gave a positive B riggs test and eluted at $\sim 500 \mathrm{mmol} \mathrm{dm}^{-3}$ buffer were pooled to give pure title compound 11ab ($27 \mu \mathrm{~mol}$, $81 \%), \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{D}_{2} \mathrm{O}\right) 4.54-4.62(2 \mathrm{H}, \mathrm{m}, 1$ - and 5-H), 4.80 (1 H, 4-H, obscured by HDO peak), 5.07 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.25,3-\mathrm{H}$), 5.23 (1 H, d, J 10.1, 2-H), 5.61 (1 H, t, J 9.9, 6-H), 7.47-7.66 [6 H, m, Ins-OC(O)Ph] and 8.09-8.16 [4 H, m, Ins-OC(O)Ph]; $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} ; \mathrm{D}_{2} \mathrm{O}\right) 71.51,72.39,73.88,74.95,128.04,128.56$, $128.79,128.98,129.54,129.70,133.22,167.52$ and 167.74; $\delta_{\mathrm{p}}\left(162 \mathrm{MHz} \mathrm{D}_{2} \mathrm{O}\right)-0.22\left(\mathrm{~d}, \mathrm{~J} 9.8, \mathrm{CHOPO}_{3}{ }^{2-}\right),-0.39(\mathrm{~d}, \mathrm{~J}$ $10.7, \mathrm{CHOPO}_{3}{ }^{2-}$), $-0.49\left(\mathrm{~d}, \mathrm{~J} 11.9, \mathrm{CHOPO}_{3}{ }^{2-}\right.$) and $-0.79(\mathrm{~d}$, $\mathrm{J}, 8.8, \mathrm{CHOPO}_{3}{ }^{2-}$); m/z (FAB^{-}) 707 [M - H (100\%)], 460 (12), 387 (30), 232 (95), 177 (20), 159 (44) and 97 (30) [Found: m/z 706.9730. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{20} \mathrm{P}_{4}$ requires $(\mathrm{M}-\mathrm{H})^{-}, 706.9732$].

DL-myo-I nositol 1,2,4,5-tetrakisphosphate 5ab

Crude DL-3,6-di-O-benzoyl-myo-inositol 1,2,4,5-tetrakisphosphate 11ab (0.1 mmol) was heated with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium hydroxide $\left(3 \mathrm{~cm}^{3}\right)$ at $60{ }^{\circ} \mathrm{C}$ for 1 h . D owex (H^{+}-form) was added with water $\left(30 \mathrm{~cm}^{3}\right)$ until the pH was -6 . The Dowex was filtered off, washed with water ($2 \times 20 \mathrm{~cm}^{3}$), and the benzoic acid was removed by washing with methylene dichloride $(2 \times 30$ cm^{3}). The aqueous layer was then concentrated and the residue was purified by ion-exchange chromatography, using a gradient of TEAB ($0-1000 \mathrm{mmol} \mathrm{dm}^{-3}$). The pure title compound 5 ab eluted at $\sim 550 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ TEA B ($80 \mu \mathrm{~mol}, 80 \%$), $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\mathrm{D}_{2} \mathrm{O}$) 3.70 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.1,3-\mathrm{H}$), $3.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,6-\mathrm{H}$), 3.97$4.04(2 \mathrm{H}, \mathrm{m}, 1$ - and $5-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.2,4-\mathrm{H})$ and $4.80(1$ H, 2-H, obscured by HDO peak); $\delta_{\mathrm{c}}\left(68 \mathrm{MHz} \mathrm{D}_{2} \mathrm{O}\right) 69.86$, 70.86, 73.91, 74.88, 76.41 and 77.71; $\delta_{\mathrm{p}}\left(162 \mathrm{M} \mathrm{Hz}_{\mathrm{H}} \mathrm{O}\right)+1.31$ (d, J $8.0, \mathrm{CHOPO}_{3}{ }^{2-}$), $+1.15\left(\mathrm{~d}, \mathrm{~J} 7.9, \mathrm{CHOPO}_{3}{ }^{2-}\right.$), +1.04 (d, J 9.9, $\mathrm{CHOPO}_{3}{ }^{2-}$) and $-0.04\left(\mathrm{~d}, \mathrm{~J} 6.0, \mathrm{CHOPO}_{3}{ }^{2-}\right.$); $\mathrm{m} / \mathrm{z}\left(\mathrm{FAB}^{-}\right)$ 499 [M - H (100\%)], 481 (5), 401 (5), 154 (10) and 97 (7) [Found: m/z, 498.9210. $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{O}_{18} \mathrm{P}_{4}$ requires $(\mathrm{M}-\mathrm{H})^{-}$, 498.9210].

DL-1,4-D i-0 -benzyl-2,3-0 -isopropylidene-myo-inositol 14ab

DL-3,6-D i-0-benzyl-1,2:4,5-di-0-isopropylidene-myo-inositol ${ }^{16}$ 13ab ($5.28 \mathrm{~g}, 12 \mathrm{mmol}$) was dissolved in methylene dichloride $\left(100 \mathrm{~cm}^{3}\right)$, followed by the addition of a catalytic amount of PTSA ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$) and one mole equivalent of ethane-1,2-diol ($0.57 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$). The mixture was stirred at room temperature until the solvent became slightly turbid. TLC $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ showed a major product $\mathrm{R}_{\mathrm{f}}=0.30$, a trace product $R_{f}=0.06$, and a trace of starting material $R_{f}=0.80$. Triethylamine ($2 \mathrm{~cm}^{3}$) was added to the reaction mixture and the solvent was evaporated off. Purification by flash chromatography (methylene dichloride-ethyl acetate, 1:1) gave the title compound $14 \mathrm{ab}\left(3.84 \mathrm{~g}, 80 \%\right.$), mp $160-161^{\circ} \mathrm{C}$ (from ethyl acetate) (lit., $\left.{ }^{20} 161-163^{\circ} \mathrm{C}\right), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 1.33,1.48(6 \mathrm{H}, 2 \mathrm{~s}$, CM e 2), $2.96\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}_{1} \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH$), 3.01\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH), 3.35 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3,5-\mathrm{H}$), 3.51 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.25,3-\mathrm{H}$), 3.52 (1 H, t, J 9.9, 6-H), 3.92 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,4-\mathrm{H}$), 4.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.3$ and $6.8,1-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.2$ and $5.1,2-\mathrm{H}), 4.68$ and 4.91 ($2 \mathrm{H}, \mathrm{AB}, \mathrm{J} 11.5, \mathrm{OCH}_{2} \mathrm{Ph}$), $4.77\left(2 \mathrm{H}\right.$, apparent $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$) and 7.24-7.41 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 25.88$, 27.99, 71.51, 72.55, 72.97, 73.27, 73.98, 76.93, 79.17, 81.89, 109.85, 127.66, 127.96, 128.02, 128.31, 128.44, 137.78 and 138.07.

DL-3,6-D i-0 -benzyl-1,2-0 -isopropylidene-4,5-bis-0 -(p-methoxy-benzyl)-myo-inositol 15ab

A mixture of DL-1,4-di-0-benzyl-2,3-0-isopropylidenemyo-
inositol 14ab ($2.8 \mathrm{~g}, 7 \mathrm{mmol}$) and sodium hydride ($0.72 \mathrm{~g}, 30$ mmol) was dissolved in dry DM F ($50 \mathrm{~cm}^{3}$). p-M ethoxybenzyl chloride ($2.9 \mathrm{~cm}^{3}, 20 \mathrm{mmol}$) was added dropwise at room temperature and the mixture was stirred for 2 h . TLC (diethyl ether-light petroleum, 2:1) showed a new product, $\mathrm{R}_{\mathrm{f}}=0.40$. The excess of sodium hydride was destroyed with methanol (10 cm^{3}) and the solvents were evaporated off in vacuo. The remaining syrup was partitioned between water ($100 \mathrm{~cm}^{3}$) and diethyl ether ($100 \mathrm{~cm}^{3}$), and washed successively with aq. 0.1 mol $\mathrm{dm}^{-3} \mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$, saturated aq. sodium hydrogen carbonate $\left(100 \mathrm{~cm}^{3}\right)$, and water ($100 \mathrm{~cm}^{3}$). The organic layer was dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, the remaining syrup was purified by flash chromatography (diethyl ether-light petroleum, 2:1) and the product 15ab was isolated as a syrup ($3.60 \mathrm{~g}, 80 \%$) (Found: C, 73.0 ; H, 6.64. $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 73.09 ; \mathrm{H}, 6.93 \%\right)$; $\delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.35$ and $1.51(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CM} \mathrm{e}$) , $3.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.8,5-\mathrm{H})$, 3.67 (1 H , dd, J 3.6 and 8.8 , 3 - or $1-\mathrm{H}$), $3.74-3.80(1 \mathrm{H}$, obscured, 1- or $3-\mathrm{H}$), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e), $3.79(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), $3.92(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.6,4-$ or $6-\mathrm{H})$) $4.09(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 6.6, 6- or 4-H), 4.25 (1 H , dd, J 4.0 and 5.3, 2-H), 4.71-4.88 (8 $\left.\mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.84\left(4 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J} 9.1, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}\right.$) and 7.21-7.41 ($14 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$ and $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e); $\delta_{\mathrm{c}}(68$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 25.53, 27.59, 55.04, 73.10, 73.65, 74.37, 74.73, $77.00,78.91,80.47,81.70,82.35,109.56,113.52,113.58,114.10$, 127.30, 127.63, 127.72, 127.82, 128.05, 128.21, 129.44, 130.61, 131.78, 138.04, 138.40 and 158.96; m/z (FAB ${ }^{-}$) 549 ($\mathrm{M}-$ benzyl, 8\%), 519 (M - p-methoxybenzyl, 40)], 335 (10), 258 (30), $137\left(\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}, 100\right)$ and $107\left(\mathrm{OCH}_{2} \mathrm{Ph}, 70\right)$.

DL-1,4-D i-0-benzyl-5,6-bis-0-(p-methoxybenzyl)-myo-inositol 16ab

DL-3,6-D i-0-benzyl-1,2-0-isopropylidene-4,5-bis-0 -(p-meth-oxybenzyl)-myo-inositol $15 \mathrm{ab}(2.25 \mathrm{~g}, 3.5 \mathrm{mmol}$) was dissolved in a mixture of methanol-1 mol dm ${ }^{-3}$ aq. $\mathrm{HCl}\left(9: 1 ; 30 \mathrm{~cm}^{3}\right)$, which solution was kept at $50^{\circ} \mathrm{C}$ for 30 min . TLC ($\mathrm{Et}_{2} \mathrm{O}$) showed a new product, $R_{f} 0.40$. Sodium hydrogen carbonate (2 g) was added and the solvents were evaporated off under reduced pressure. The product was extracted with methylene dichloride ($3 \times 100 \mathrm{~cm}^{3}$), and the organic solvent was evaporated off to give a solid. The crude product was purified by flash chromatography (diethyl ether-chloroform, 3:1) to give the title compound 16ab ($1.9 \mathrm{~g}, 90 \%$), mp 130-132 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane) (lit., ${ }^{19} 130.4-130.6^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $2.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.4, \mathrm{D}_{2} \mathrm{O} \mathrm{ex}, \mathrm{OH}\right), 2.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O} \mathrm{ex}, \mathrm{OH}\right), 3.43$ (2 H , overlapping, $3-$ and $1-\mathrm{H}$), 3.44 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3,5-\mathrm{H}$), 3.78 (3 $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e), 3.81 (1 $\mathrm{H}, \mathrm{t}, \mathrm{J} 9.3,4$ or $6-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,6-$ or $4-\mathrm{H}), 4.25(1 \mathrm{H}$, br s, 2-H) , 4.70-4.96 ($8 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$ and $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}$), 6.83 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), $6.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8$, $0 \mathrm{OH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$) and $7.21-7.36\left(14 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right.$ and $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 55.04,69.15,71.71$, $72.68,75.34,75.50,80.01,81.28,81.37,82.93,113.74,127.82$, 127.89, 128.54, 129.41, 129.54, 130.68, 130.84, 138.49, 138.81 and $159.12 ; \mathrm{m} / \mathrm{z}\left(\mathrm{FA} \mathrm{B}^{-}\right) 753(\mathrm{M}+\mathrm{NBA}, 40 \%), 599(\mathrm{M}-\mathrm{H}, 100)$, 509 (M - benzyl, 10), 479 (M - p-methoxybenzyl, 20), 335 (15), $137\left(\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}, 30\right)$ and $107\left(\mathrm{OCH}_{2} \mathrm{Ph}, 30\right)$.

D-18 and L-1-0-[(S)-(+)-0-A cetylmandelyl]-3,6-di-0-benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol 19

A mixture of DL-1,4-di-0-benzyl-5,6-bis-0-(p-methoxybenzyl)-myo-inositol 16 ab ($2.5 \mathrm{~g}, 4.17 \mathrm{mmol}$), (S)-(+)-0-acetylmandelic acid 17 ($0.835 \mathrm{~g}, 4.3 \mathrm{mmol}$) and 4-(dimethylamino)pyridine (D M AP) ($0.03 \mathrm{~g}, 0.25 \mathrm{mmol}$) was stirred in methylene dichloride ($15 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$ (solid CO_{2} alone). A solution of dicyclohexylcarbodiimide (DCC) ($0.877 \mathrm{~g}, 4.33 \mathrm{mmol}$) in methylene dichloride ($5 \mathrm{~cm}^{3}$) was added dropwise over a period of 90 min with stirring of the reaction mixture, which was then stirred at room temperature overnight after which TLC (chloroform-acetone, 30:1) showed two products, $\mathrm{R}_{\mathrm{f}} 0.44$ and 0.34 . The mixture was filtered through Celite and washed
thoroughly with methylene dichloride ($100 \mathrm{~cm}^{3}$). The solvent was evaporated off to give a solid, and the individual diastereoisomers were separated by flash chromatography (chloro-form-acetone, 30:1) to give isomers 18, $\mathrm{R}_{\mathrm{f}} 0.44$ (36% yield); $\mathrm{mp} 120-121^{\circ} \mathrm{C}$ (from EtOH); $[a]_{\mathrm{D}}+12\left(\mathrm{c} \mathrm{1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) and 19, $R_{f} 0.34$ (37% yield); mp $147-148^{\circ} \mathrm{C}$ (from EtOH); $[a]_{\mathrm{D}}+42$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); for isomer 18 (Found: C, 71.1; $\mathrm{H}, 6.27 . \mathrm{C}_{46} \mathrm{H}_{48} \mathrm{O}_{11}$ requires $\mathrm{C}, 71.10 ; \mathrm{H}, 6.23 \%$) and for isomer 19 (Found: $\mathrm{C}, 70.8$; $\mathrm{H}, 6.22 \%$); isomer $18 \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH), $2.19\left[3 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right], 3.44(1 \mathrm{H}, \mathrm{dd}$, J 2.45 and 9.5, $3-\mathrm{H}$), $3.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,5-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e), $3.91(1 \mathrm{H}, \mathrm{t}$, J $9.5,4-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.1,6-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 1.8)$, 4.61-4.81 ($9 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{OCH}_{2} \mathrm{OM}$ e, and 1-H), $5.94[1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right], 6.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e), 6.83 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.85, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e) and 7.16-7.44[19 H, m, $\mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e and $\left.\mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAC}) \mathrm{Ph}\right] ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $20.70,55.25,67.32,72.80,74.78,75.25,75.46,75.58$, 78.42, 79.61, 80.72, 82.73, 113.77, 127.34, 127.52, 127.76, 127.91, 128.29, 128.47, 128.82, 129.26, 129.42, 129.55, 130.76, 130.81, 133.37, 137.71, 138.31, 159.14, 159.18, 168.27 and 170.75; m/z (FA B ${ }^{-}$) 929 ($\mathrm{M}+\mathrm{NBA}, 30 \%$), 775 ($\mathrm{M}-\mathrm{H}, 58$), 599 (50), 193 (55) and 149 (100).

For isomer $19 \delta_{\mathrm{H}}\left(400 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 2.17\left[3 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}-\right.$ (OAC) Ph], $2.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH$), 3.43(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,5-\mathrm{H})$, 3.49 (1 H , dd, J 2.75 and $9.8,3-\mathrm{H}$), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}{ }^{-}\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}\right.$ e), $3.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8,4-$ H), $4.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.8,6-\mathrm{H}), 4.14$ and 4.46 ($2 \mathrm{H}, \mathrm{AB}, \mathrm{J} 11.0$, $\mathrm{OCH}{ }_{2} \mathrm{Ph}$ or $\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}$), $4.40(1 \mathrm{H}$, br d, J $1.8,2-\mathrm{H}$), 4.61-4.84(7 H , m, OCH ${ }_{2} \mathrm{Ph}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e, and 1-H), $5.98[1$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right], 6.75\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}\right)$, 6.82 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.85, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}{ }_{4} \mathrm{OM} \mathrm{e}$) and 6.83-7.46[19 H, m, $\mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OM}$ e and $\mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAC}) \mathrm{Ph}$]; $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $20.65,55.23,55.27,67.43,72.80,74.94,74.98,75.40$, 75.58, 78.40, 79.79, 80.74, 82.70, 113.68, 113.75, 127.19, 127.25, $127.89,128.02,128.49,128.84,129.41,129.50,130.65,130.83$, 132.92, 137.63, 138.20, 159.08, 159.16, 168.58 and $170.66 ; \mathrm{m} / \mathrm{z}$ (FA B $) 929$ (M + NBA, 15\%), 775 (M - H, 28), 599 (25), 193 (55) and 149 (100).

D-3,6-D i-0-benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol 16a

A mixture of $\mathrm{D}-1-0-[(\mathrm{S})-(+)-0$-acetylmandelyll $]-3,6-\mathrm{di}-0-$ benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol 18 (0.956 g , 1.23 mmol), sodium hydroxide ($0.40 \mathrm{~g}, 10 \mathrm{mmol}$) and methanol $\left(100 \mathrm{~cm}^{3}\right)$ was heated at reflux temperature for 30 min . The mixture was cooled, and neutralised with carbon dioxide. The resulting solid was diluted with water ($50 \mathrm{~cm}^{3}$) and evaporated to dryness in vacuo. The crude product was extracted with methylene dichloride ($4 \times 100 \mathrm{~cm}^{3}$) which was then evaporated off to give a solid, compound 16a, $\mathrm{R}_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right) 0.40$ ($0.729 \mathrm{~g}, 99 \%$); $\mathrm{mp} 133-134^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[a]_{\mathrm{D}}-25$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 72.1$; $\mathrm{H}, 6.77 . \mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{8}$ requires $\mathrm{C}, 71.98$; $\mathrm{H}, 6.71 \%)$. The mass spectrum and NMR data were identical with those of racemate $\mathbf{1 6 a b}$.

L-3,6-D i-0 -benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol 16b

A mixture of L-1-0-[(S)-(+)-0-acetylmandelyl]-3,6-di-0-benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol 19 (0.929 g , 1.19 mmol), sodium hydroxide ($0.40 \mathrm{~g}, 10 \mathrm{mmol}$) and methanol $\left(100 \mathrm{~cm}^{3}\right)$ was heated at reflux temperature for 30 min . Work-up as for the D-enantiomer gave the title compound $16 b R_{f}\left(E t_{2} \mathrm{O}\right)$ $0.40(0.655 \mathrm{~g}, 91 \%) ; \mathrm{mp} 133-134^{\circ} \mathrm{C}$ (from ethyl acetatehexane); $[a]_{\mathrm{D}}+25$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}$) (Found: C, 72.0; H, 6.86\%). The mass spectrum and NMR data were identical with those of racemate 16ab.

D-3,6-D i-0 -benzyl-myo-inositol 20a

D-3,6-D i-0-benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol

16a ($0.624 \mathrm{~g}, 1.04 \mathrm{mmol}$) was suspended in $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl -ethanol ($60 \mathrm{~cm}^{3} ; 1: 2$). The mixture was heated at reflux temperature for 4 h , cooled and the solvents were evaporated in vacuo. The resulting solid was filtered off and washed with water ($10 \mathrm{~cm}^{3}$) and ether ($2 \times 10 \mathrm{~cm}^{3}$). The solid was then recrystallised from ethanol to give the pure title compound 20a, R_{f} (chloroform-methanol, 6:1) $0.60(0.323 \mathrm{~g}, 86 \%)$; mp 172$173^{\circ} \mathrm{C}$ (from ethanol); $[a]_{\mathrm{D}}+16$ (c 1, M eOH) (Found: $\mathrm{C}, 66.6$; $\mathrm{H}, 6.73 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 66.65 ; \mathrm{H}, 6.71 \%\right) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; [${ }^{2} \mathrm{H}_{6}$]D M SO) $3.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and $9.8,3-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{dt}$, J 4.9 and $8.85, \mathrm{D}_{2} \mathrm{O}$ ex, t, J $\left.9.15,5-\mathrm{H}\right), 3.31$ (1 H , ddd, J $2.4,6.7$ and $9.5, \mathrm{D}_{2} \mathrm{O}$ ex, dd, J 2.4 and $\left.9.8,1-\mathrm{H}\right), 3.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5$, $6-\mathrm{H}), 3.60\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 2.4\right.$ and $5.8, \mathrm{D}_{2} \mathrm{O}$ ex, $\left.\mathrm{t}, \mathrm{J} 2.4,2-\mathrm{H}\right), 4.51$ and $4.60\left(2 \mathrm{H}, \mathrm{AB}, \mathrm{J} 12.2, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{D}_{2} \mathrm{O}\right.$ ex, OH), 4.74-4.81 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 4.9, $\mathrm{D}_{2} \mathrm{O}$ ex, OH) and 7.11-7.44 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}$); $\delta_{\mathrm{c}}(100$ M Hz; ${ }^{2}{ }^{2} \mathrm{H}_{6}$]DM SO) 69.73, 70.72, 71.43, 72.25, 73.59, 75.03, 79.79, 81.82, 126.92, 127.08, 127.48, 127.52, 127.63, 127.85, 127.99, 139.32 and 139.94; m/z (FAB^{-}) 513 (M + NBA, 100\%), 359 ($\mathrm{M}-\mathrm{H}, 75$), 291 (50) and 228 (30).

L-3,6-D i-O-benzyl-myo-inositol 20b

L-3,6-D i-0 -benzyl-4,5-bis-0-(p-methoxybenzyl)-myo-inositol
16b ($0.590 \mathrm{~g}, 0.98 \mathrm{mmol}$) was suspended in $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl -ethanol ($60 \mathrm{~cm}^{3} ; 1: 2$). The mixture was heated at reflux temperature for 4 h , cooled, and evaporated in vacuo. The resulting solid was filtered off, and washed successively with water ($10 \mathrm{~cm}^{3}$) and diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$). The solid was then recrystallised from ethanol to give the pure title compound 20b, R_{f} (chloroform-methanol, 6:1) 0.60 ($0.293 \mathrm{~g}, 83 \%$); mp $172-173{ }^{\circ} \mathrm{C}$ (from EtOH); $[a]_{\mathrm{D}}-16$ (c $1, \mathrm{M} \mathrm{eOH}$) (Found: C , $66.4 ; \mathrm{H}, 6.73 \%$). The mass spectrum and N M R data were identical with those of compound 20a.

D-3,6-D i-0 -benzyl-1,2,4,5-tetrakis-0-[di(benzyloxy)phosphoryl]-myo-inositol 25a

A mixture of bis(benzyloxy)diisopropylaminophosphine 21 ($0.69 \mathrm{~g}, 2 \mathrm{mmol}$) and 1 H -tetrazole $22(0.28 \mathrm{~g}, 4 \mathrm{mmol})$ in dry methylene dichloride ($5 \mathrm{~cm}^{3}$) was stirred at room temperature for 15 min in order to form the tetrazolide intermediate 23. D-3,6-Di-O-benzyl-myo-inositol 20a ($0.108 \mathrm{~g}, 0.30 \mathrm{mmol}$) was added to compound $\mathbf{2 3}$ and the mixture was stirred for a further 10 min before being cooled to $0^{\circ} \mathrm{C}$; M CPBA ($0.8 \mathrm{~g}, 2.3 \mathrm{mmol}$) ($50-60 \%$) was added and the mixture was stirred for a further 30 min , diluted with ethyl acetate ($50 \mathrm{~cm}^{3}$), and washed successively with 10% aq. sodium metabisulfite ($50 \mathrm{~cm}^{3}$), $1 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl , saturated aq. sodium hydrogen carbonate, brine and water ($50 \mathrm{~cm}^{3}$ of each). The organic layer was separated, then dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, and evaporated to give a syrup. The product was purified by flash chromatography, R_{f} (chloroform-acetone, $5: 1) 0.20$, then (ethyl acetate-pentane, $2: 1$), in order to obtain the pure title compound $\mathbf{2 5 a}$ as a syrup ($0.395 \mathrm{~g}, 94 \%$); $[a]_{\mathrm{D}}-3.5$ (c 2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 65.2 ; \mathrm{H}, 5.54 . \mathrm{C}_{76} \mathrm{H}_{76} \mathrm{O}_{18} \mathrm{P}_{4}$ requires C , $65.14 ; \mathrm{H}, 5.47 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,3-\mathrm{H})$, $3.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,6-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,5-\mathrm{H}), 4.48-5.11[22$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{O}(\mathrm{O}) \mathrm{POCH} \mathrm{P}_{2} \mathrm{Ph}, \mathrm{OCH}_{2} \mathrm{Ph}, 1-\mathrm{and} 4-\mathrm{H}\right], 5.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.9, 2-H) and 6.94-7.41 [50 H, m, O(O)POCH ${ }_{2} \mathrm{Ph}$ and $\mathrm{OCH}_{2} \mathrm{Ph}$]; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 69.18,69.23,69.29,69.24$, 69.42, 69.47, 69.53, 69.60, 69.65, 72.24, 74.37, 74.37, 74.63, $75.43,77.38,78.66,127.19,127.39,127.57,127.74,127.85$, $127.96,128.09,128,16,128.29,128.45,128.51,128.65,135.48$, $135.55,135.60,135.73,135.78,135.84,135.91,136.01,136.46$ and $137.94 ; \delta_{\mathrm{p}}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-1.16,-1.66,-1.71$ and $-2.07\left(^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right.$-decoupled); m/z (FAB+) 1401 (M + H, 7\%), 181 (5), 107 (2) and 91 (100).

L-3,6-Di-0-benzyl-1,2,4,5-tetrakis-0-[di(benzyloxy)phosphoryl] myo-inositol 25b

A mixture of bis(benzyloxy)diisopropylaminophosphine 21 ($0.69 \mathrm{~g}, 2 \mathrm{mmol}$) and 1 H -tetrazole 22 ($0.28 \mathrm{~g}, 4 \mathrm{mmol}$) in dry
methylene dichloride ($5 \mathrm{~cm}^{3}$) was stirred at room temperature for 15 min in order to form the tetrazolide intermediate 23. L-3,6-D i-O-benzyl-myo-inositol 20 b ($0.108 \mathrm{~g}, 0.30 \mathrm{mmol}$) was added to the solution, which was stirred for a further 10 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{MCPBA}(0.8 \mathrm{~g}, 2.3$ $\mathrm{mmol})(50-60 \%)$ was added and the mixture was stirred for a further 30 min . The product $\mathbf{2 5 b}$ was extracted, and purified by chromatography in the same way as its antipode 25 a (0.37 g , 88%), $[a]_{\mathrm{D}}+3.3$ (c 1.26, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 65.0; H, 5.72%. The mass spectrum and NMR data wereidentical with those of isomer 25a.

D-myo-Inositol 1,2,4,5-tetrakisphosphate 5a

A mmonia $\left(80 \mathrm{~cm}^{3}\right.$) was distilled into a three-neck flask (cooled with solid CO_{2}) and small pieces of freshly cut sodium metal ($0.80 \mathrm{~g}, 34.8 \mathrm{mmol}$) were added until the solution remained blue. The solid- CO_{2} condenser was moved to the reaction flask and ammonia ($40 \mathrm{~cm}^{3}$) was gently transferred to the flask by heating. Small slivers of sodium ($0.40 \mathrm{~g}, 17.4 \mathrm{mmol}$) were added to the ammonia until the colour remained blue once again. D-3,6-Di-O-benzyl-1,2,4,5-tetrakis-o-[di(benzyloxy)-phosphoryl]-myo-inositol $25 a(0.178 \mathrm{~g}, 126 \mu \mathrm{~mol})$ was dissolved in dry 1,4-dioxane ($1 \mathrm{~cm}^{3}$), and the solution was then added to the mixture of sodium in liquid ammonia. The reaction was left for 2 min and was then quenched with methanol $\left(20 \mathrm{~cm}^{3}\right)$. The ammonia was evaporated off under a stream of nitrogen and M illiQ water was then added to the residue, which was evaporated to dryness in vacuo. The deprotected phosphate was purified by ion-exchange chromatography on Q-Sepharose, using a gradient of TEAB buffer ($0-1000 \mathrm{mmol} \mathrm{dm}^{-3}$) and eluted at $-800 \mathrm{mmol} \mathrm{dm}^{-3}$, to give title compound 5 a ($50.02 \mu \mathrm{~mol}, 40 \%$), $[a]_{\mathrm{D}}-27.2$ (c 0.50 , TEAB, pH 8.6); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}_{\mathrm{F}} \mathrm{D}_{2} \mathrm{O}\right) 3.59$ (1 H, d, J 9.8, 3-H), 3.76 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5,6-\mathrm{H}$), 3.90 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.15$, 1 - and $5-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.5,4-\mathrm{H})$ and $4.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8$, $2-\mathrm{H}) ; \delta_{\mathrm{P}}\left(162 \mathrm{M} \mathrm{Hz} ; \mathrm{D}_{2} \mathrm{O}\right)+0.65\left(\mathrm{~d}, \mathrm{~J} 9.3, \mathrm{CHOPO}_{3}{ }^{2-}\right),+0.27$ (d, J $9.0, \mathrm{CHOPO}_{3}{ }^{2-}$), -0.01 (d, J $9.0, \mathrm{CHOPO}_{3}{ }^{2-}$) and -0.33 (d, J 8.1, $\mathrm{CHOPO}_{3}{ }^{2-}$); m/z (FAB^{-}) $499[\mathrm{M}-\mathrm{H}(100 \%)], 419$ (5), 159 (10) and 97 (9) [Found: m/z, $498.9226(\mathrm{M}-\mathrm{H})^{-}$ requires $\mathrm{m} / \mathrm{z}, 498.9208]$.

L-myo-Inositol 1,2,4,5-tetrakisphosphate 5b

L-3,6-Di-O-benzyl-1,2,4,5-tetrakis-0-[di(benzyloxy)phos-
phoryl]-myo-inositol 25b ($0.10 \mathrm{~g}, 71 \mu \mathrm{~mol}$) was deprotected as for its antipode 25a to give pure L-myo-inositol $1,2,4,5-$ tetrakisphosphate $\mathbf{5} \mathbf{b}$ after ion-exchange chromatography (15.56 $\mu \mathrm{mol}, 22 \%$). The N M R spectra were slightly different due to the different pH of the solution sample; $[a]_{\mathrm{D}}+25.8$ (c 0.31, TEA B, $\mathrm{pH} 8.6) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} \mathrm{D}_{2} \mathrm{O}\right) 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.7,3-\mathrm{H}), 3.90(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 9.5,6-\mathrm{H}), 4.03(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.3$, 1 - and $5-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 9.5$, 4-H) and $4.71(1 \mathrm{H}, \mathrm{brd}$, J $9.7,2-\mathrm{H}) ; \delta_{\mathrm{p}}\left(109 \mathrm{M} \mathrm{Hz} ; \mathrm{D}_{2} \mathrm{O}\right)+1.78$ ($\mathrm{d}, \mathrm{J} 10.1, \mathrm{CHOPO}_{3}{ }^{2-}$), +1.44 ($\mathrm{d}, \mathrm{J} 6.7, \mathrm{CHOPO} 3^{2-}$), +1.20 (d , J $6.7, \mathrm{CHOPO} 3^{2-}$) and $+0.67\left(\mathrm{~d}, \mathrm{~J} 6.7, \mathrm{CHOPO}_{3}{ }^{2-}\right) ; \mathrm{m} / \mathrm{z}$ (FA B ${ }^{-}$) $499[\mathrm{M}-\mathrm{H}(100 \%)], 419$ (10), 159 (10) and 97 (10) [Found: m / z, 498.9187].

D-3,6-B is-0-[(S)-(+)-0-acetyImandelyl]-1,2:4,5-di-0-isopropylidene-myo-inositol 27

A mixture of DL-1,2:4,5-di-0-isopropylidene-myo-inositol 12ab ($2.08 \mathrm{~g}, 8 \mathrm{mmol}$), DCC ($4.13 \mathrm{~g}, 20 \mathrm{mmol}$) and DMAP ($0.05 \mathrm{~g}, 0.4 \mathrm{mmol}$) in dry methylene dichloride ($50 \mathrm{~cm}^{3}$) was stirred at $0^{\circ} \mathrm{C}$ under nitrogen. A solution of $(\mathrm{S})-(+)-0$ acetylmandelic acid 17 ($3.88 \mathrm{~g}, 20 \mathrm{mmol}$) in dry methylene dichloride $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 15 min and the mixture was stirred overnight. The precipitated dicyclohexylurea was filtered off over Celite and the filtrate was evaporated to givea solid. The mixture of diastereoisomers was purified by flash chromatography $\left[\mathrm{R}_{\mathrm{f}}\right.$ (chloroform-acetone, 16:1) 0.30] but they could not be separated. The mixture was recrystallised four times from methanol to give the single pure diastereoisomer 27 ($0.89 \mathrm{~g}, 18 \%$) in an unoptimised yield, mp

212-214 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}+64$ ($\mathrm{C} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 62.7 ; \mathrm{H}, 5.88$. $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{12}$ requires C, $62.74 ; \mathrm{H}, 5.92 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.21, 1.29, 1.32 and $1.57\left(12 \mathrm{H} \mathrm{} 4 \mathrm{~s},, \mathrm{CM} \mathrm{e}_{2}\right.$), 2.17 and $2.18[6 \mathrm{H}, 2$ $\mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}$], $3.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.3$ and 11.0, $5-\mathrm{H}$), 4.04 (1 H, t, J $10.45,4-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and $6.6,1-\mathrm{H}), 4.54(1 \mathrm{H}$ t, J $4.6,2-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.2$ and $10.6,3-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{dd}$, J 6.6 and $11.0,6-\mathrm{H}), 6.01\left[1 \mathrm{H}, \mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right], 6.11[1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right]$ and $7.33-7.52\left[10 \mathrm{H}, \mathrm{m}, \mathrm{O}_{2} \mathrm{CCH}(\mathrm{OAc}) \mathrm{Ph}\right] ;$ $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3} ; 68 \mathrm{M} \mathrm{Hz}\right) 20.59,20.72,25.72,26.56,26.69,27.73$, $71.34,74.05,74.34,74.48,75.04,75.67,76.37,78.65,110.72$ 112.61, 127.92, 128.17, 128.54, 128.59, 129.07, 129.20, 167.74, 168.40, 169.85 and 170.54; m/z (FA B ${ }^{+}$) 613 (M + H, 50\%), 555 (30), 149 (90) and 107 (100).

D-1,2:4,5-D i-0 -isopropylidene-myo-inositol 12a

A mixture of $\mathrm{D}-3,6$-di-0-[(S)-(+)-0-acetylmandelyl]-1,2:4,5-di-O-isopropylidene-myo-inositol 27 ($0.74 \mathrm{~g}, 1.21 \mathrm{mmol}$), sodium hydroxide ($0.40 \mathrm{~g}, 10 \mathrm{mmol}$) and methanol ($100 \mathrm{~cm}^{3}$) was heated at reflux temperature for 30 min . The mixture was cooled, and neutralised with carbon dioxide The solid was then diluted with water ($50 \mathrm{~cm}^{3}$) and evaporated to dryness in vacuo The crude product was extracted with methylene dichloride $\left(4 \times 100 \mathrm{~cm}^{3}\right.$) and the solvent was evaporated off to give a solid. The title compound 12a was purified by flash chromatography (ethyl acetate-methylene dichloride, $1: 1$), $\mathrm{R}_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right) 0.20$, and dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, and the solvent was evaporated off. The remaining solid was recrystallised from ethyl acetate to give compound 12a ($0.27 \mathrm{~g}, 86 \%$), $\mathrm{mp} 174-176^{\circ} \mathrm{C}$ (from ethyl acetate) (lit., ${ }^{25}$ $176-177^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}-22(\mathrm{c} 1, \mathrm{M} \mathrm{eCN})\left(\right.$ (lit., ${ }^{24}-21.7, \mathrm{c} 0.46 \mathrm{M} \mathrm{eCN}$) (Found: C, 55.6; H, 7.88. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}$ requires: C, 55.37; H, 7.74\%). The NM R data were identical with those for racemate 12ab. ${ }^{33}$

D-3,6-D i-0-benzyl-1,2:4,5-di-0-isopropylidene-myo-inositol

 13aA mixture of $\mathrm{D}-1,2: 4,5$-di-O-isopropylidene-myo-inositol 12a ($0.209 \mathrm{~g}, 0.80 \mathrm{mmol}$), D M F ($10 \mathrm{~cm}^{3}$) and sodium hydride (0.096 $\mathrm{g}, 4 \mathrm{mmol}$) was stirred at room temperature Benzyl bromide ($0.2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) was added and the mixture was stirred for a further 2 h . TLC (diethyl ether-light petroleum, 1:1) then showed a new product, $\mathrm{R}_{\mathrm{f}} 0.60$. M ethanol ($2 \mathrm{~cm}^{3}$) was added to destroy the excess of sodium hydride and the solvents were evaporated off in vacuo. The residue was partitioned between water and diethyl ether ($30 \mathrm{~cm}^{3}$ each) and the organic layer was evaporated off to give a solid. The title compound 13a was purified by flash chromatography (diethyl ether-pentane, 1:2) and recrystallised from hexane ($0.32 \mathrm{~g}, 91 \%$); mp $157-159^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{26} 159-161^{\circ} \mathrm{C}$, for L-enantiomer); $[a]_{\mathrm{D}}-44$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (lit., ${ }^{26}+85$, c 1, CHCl_{3}, for L-enantiomer) (Found: $\mathrm{C}, 71.1 ; \mathrm{H}, 7.35 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 70.89 ; \mathrm{H}, 7.32 \%\right)$. The NM R data were identical with those of racemate 13ab. ${ }^{33}$

D-3,6-D i-O-benzyl-myo-inositol 20a

A mixture of $\mathrm{D}-3,6$-di- 0 -benzyl-1,2:4,5-di-0-isopropylidene-myo-inositol 13 a ($0.27 \mathrm{~g}, 0.62 \mathrm{mmol}$) and methanol- $1 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HCl}\left(50 \mathrm{~cm}^{3} ; 9: 1\right)$ was heated at reflux temperature for 30 min . The solution was cooled and the solvents were evaporated off to give a solid, which was recrystallised from ethanol $\left[R_{f}\right.$ (chloroform-methanol; 6:1) 0.60] ($0.21 \mathrm{~g}, 95 \%$), mp $172-$ $173{ }^{\circ} \mathrm{C}$ (from EtOH); $[a]_{\mathrm{D}}+16$ (c $1, \mathrm{MeOH}$). The mass spectrum and NMR data were identical with those of compound 20a as described previously.

Council for financial support. B. V. L. P. is a Lister Institute Research Professor. We also thank Dr Christine M urphy and Professor John Westwick for the preliminary biological data.

R eferences

1 B. V. L. Potter and D. Lampe, A ngew. Chem., Int. Ed. Engl., 1995, 34, 1933.
2 G. W. M ayr, B iochem. J., 1989, 259, 463.
3 V. Sylvia, G. Curtin, J. N orman, J. Stec and D. Busbee, C ell, 1988, 54, 651.
4 A . Lückhoff and D. E. Clapham, N ature (L ondon), 1992, 355, 356.
5 P. J. Cullen, J. J. H suan, O. Truong, A. J. Letcher, T. R. Jackson, A. P. D awson and R. F. I rvine, N ature (L ondon), 1995, 376, 527.

6 M . A . Polokoff, G. J. Bencen, J. P. Vacca, J. de Solms, S. D. Young and J. R. H uff, J. Biol. C hem., 1988, 263, 11927.
7 M. Hirata, Y. Watanabe, T. Ishimatsu, T. Ikebe, Y. K imura, K. Yamaguchi, S. Ozaki and T. K oga, J. Biol. Chem., 1989, 264, 20303.

8 S. H. Ryu, S. Y. Lee, K.-Y. Lee and S. G. R hee, FASE B J ., 1987, 1, 388.

9 G. St. J. Bird and J. W. Putney J r., J. Biol. C hem., 1996, 271, 6766.
10 D. J. G awler, B. V. L. Potter and S. R . N ahorski, B iochem. J., 1990, 272, 519.
11 D. J. G awler, B. V. L. Potter, R . Gigg and S. R . N ahorski, Biochem, J., 1991, 276, 163.

12 R. A. Wilcox, R. A . J. Challis, G. Baudin, A . Vasella, B. V. L. Potter and S. R. N ahorski, B iochem. J., 1993, 294, 191.
13 M. Hirata, F. Yanaga, T. K oga, T. Ogasawara, Y. Watanabe and S. Ozaki, J. Biol. Chem., 1990, 265, 8404.

14 (a) S. J. M ills, S. T. Safrany, R. A. Wilcox, S. R. N ahorski and B. V. L. Potter, Bioorg. M ed. Chem. Lett., 1993, 3, 1505; (b) N. H irata, N. N arumoto, Y. Watanabe, T. K anematsu, T. K oga and S. Ozaki, M ol. P harmacol., 1994, 45, 271.

15 A. P. K ozikowski, A. H. Fauq, R. A. Wilcox and S. R. N ahorski, Bioorg. M ed. Chem. Lett., 1995, 5, 1295; J. Chen, G. D ormán and G. D. Prestwich, J. Org. C hem., 1996, 61, 393.

16 J. Gigg, R. Gigg, S. Payne and R. Connant, C arbohydr. Res., 1985, 142, 132.
17 J. L. Meek, F. D avidson and F. W. H obbs J r., J. Am. Chem. Soc., 1988, 110, 2317.
18 M. R. H amblin, R. Gigg and B. V. L. Potter, J. C hem. Soc., C hem. Commun., 1987, 626.
19 D. J. R. M assy and P. Wyss, H elv. C him. A cta, 1990, 73, 1037.
20 J. Gigg, R. Gigg, S. Payne and R. Conant, J. Chem. Soc., Perkin Trans. 1, 1987, 423.
21 N. Chida, E. Yamada and S. Ogawa, J. C arbohydr. C hem., 1988, 7, 555.

22 N. Chida, Y. F uruno and S. Ogawa, J. Chem. Soc., Chem. Commun., 1989, 1230.
23 S. J. M ills and B. V. L. Potter, J. Org. Chem., 1996, 61, 8980.
24 M. Jones, K. K. Rana, J. G. Ward and R. C. Young, Tetrahedron Lett., 1989, 30, 5353.
25 J. L. Chiara and M. M artín-Lomas, Tetrahedron Lett., 1994, 35, 2696
26 T. Desai, J. Gigg, R. Gigg, E. M artín-Zamora and N. Schnetz, C arbohydr. Res., 1994, 258, 135.
27 K .-L. Y u and B. F raser-R eid, Tetrahedron Lett., 1988, 29, 979.
28 A. M. Cooke, R. Gigg and B. V. L. Potter, Tetrahedron L ett., 1987, 28, 2305.
29 R. A. Wilcox, S. T. Safrany, D. Lampe, S. J. M ills, S. R. N ahorski and B. V. L. Potter, E ur. J. Biochem., 1994, 223, 115.
30 S. T. Safrany, S. J. M ills, C. Liu, D. Lampe, N. J. N oble, S. R . N ahorski and B. V. L. Potter, B iochemistry, 1994, 33, 10763.

31 W. C. Still, M. K ahn and A . M itra, J. Org. C hem., 1978, 43, 2923.
32 A. Briggs, J. Biol. Chem., 1922, 53, 13; D. Lampe, C. Liu and B. V. L. Potter, J. M ed. Chem., 1994, 37, 907.

33 S.-K. Chung and Y. Ryu, C arbohydr. Res., 1994, 258, 145.

Acknowledgements

We thank the Biotechnology and Biological Sciences Research

Paper 6/08337D
R eceived 11th D ecember 1996 A ccepted 21st J anuary 1997

